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 Dynamical systems of predator-prey interaction are a cornerstone of mathematical 

biology. Many natural situations studied in ecology involve the interaction between two or 

more species. This can include species in competition for resources, or a predator-prey 

interaction such as the one studied in this paper. Also known as the Lotka-Volterra equations, 

predator-prey systems describe the change in population over time for the two species. An 

example of a system of competing species was discussed during class in Math 361 using rabbits 

and sheep. To adapt this to a predator-prey context, rabbits and foxes could be used instead.  

 The basic predator-prey model was proposed in 1910 by Alfred Lotka and was originally 

used to describe chemical reactions. It was extended to organic systems by Lotka in 1920, 

before first being used for actual predator-prey interaction in Lotka’s book Biomathematics 

(1925). Since its inception, the model has been extended in myriad ways to account for 

additional components and characteristics of natural systems, with the overall goal of 

increasing the validity of the model and the degree to which it represents reality. The model 

has also been used in other disciplines such as economics.  



 One extension of the model to improve applicability to certain ecological systems was 

studied by Tapan Kumar Kar. As a mathematics student particularly interested in applications 

within both ecology and epidemiology, I chose this paper due to the crucial role that predator-

prey interactions play in this area of applied mathematics. In this paper, an additional term was 

added to the basic predator-prey model to account for a spatial refuge available to a certain 

proportion of the prey population. The parameter m represents this proportion. It is assumed 

that this refuge completely protects prey from harm and is inaccessible to predators. This then 

reduces the number of prey available to the predators to the value of (1-m)*x, where x is the 

entire prey population. Previous research finds that prey refuge has a stabilizing effect on 

predator-prey interaction, but this has not been proved to occur in all cases. As stated by Kar, 

previous research has also found that a model incorporating refuge of constant proportion does 

not alter stability, whereas a refuge of constant number does.  

Prey refuge can be represented by a variety of different natural situations. For example, 

it could be a region too small for larger prey to enter, such as a cave or hole, allowing the prey 

to escape to safety. Additionally, it could be a region with a lower population of predators due 

to resource availability or hunting policy, which would then act as a refuge area for prey. In all 

cases, incorporating prey refuge affects the equilibrium, stability, and the overall qualitative 

behaviour of the system.    

 The following system of differential equations is used for the model: 



 

As we can see from the model, the x variable represents the prey population because 

the interaction term is negative. Conversely, the interaction term is positive for y variable, 

which represents the predator population. All parameters, with the exception of the m 

parameter, are the same as the base version of this predator-prey interaction. Therefore, α 

represents the intrinsic growth rate and k represents the carrying capacity for the prey. The 

value of α would be calculated based upon the reproductive characteristics for the species of 

study, and the k value would represent the maximum possible population, which is similar to its 

usage in the logistic equation. γ is the death rate for the predator population. β/a is the 

maximum amount of prey that can be eaten by the predators per unit time. Finally, c is the 

conversion factor representing how many new predators would be born for each captured 

prey.  

The system parameter is the refuge parameter m. Varying this parameter represents 

changing the proportion of prey protected by the spatial refuge and observing the resulting 

effect on the overall populations. The original work presented numerical simulations, which 

have been reproduced for this project using XPPAUTO. Solution curves and phase portrait 

diagrams are presented for various values of m, which represent the dynamics of the system 

based on the proportion of prey that is able to use the refuge. A nullcline diagram and a 

bifurcation diagram for parameter m are also presented.  



For the numerical simulations, identical parameter values were used in XPPAUTO as 

were used in the original paper. Therefore, let α=10, k=100, a=0.02, γ=0.09, β=0.6, and c=0.02 

for all simulations presented. Parameter m was varied between 0 and 1 as the system 

parameter. In the first diagram (Figure 1), x and y nullclines are shown for the system as well as 

the interior equilibrium point (9.80, 19.65). Analysis was focused on this equilibrium point in 

the original work as this is the only steady state in the system in which both predator and prey 

populations are nonzero, and thus is of the most interest when studying the effects of the 

refuge.  

 

 

Figure 1: Nullclines with Equilibrium Point shown (9.80, 19.651). m=0.1. 

  



 Figure 2 shows the phase portrait for m=0.1. This corresponds to 10% of the prey 

population accessing the spatial refuge. From the diagram it can be seen that the interior 

equilibrium point (9.80, 19.65) is unstable and solutions approach a unit limit cycle. Solutions 

outside the limit cycle spiral inward, while solutions inside the limit cycle spiral outward, before 

both converge onto the limit cycle over time.  

 

Figure 2: Phase Portrait of system with m=0.1 

 Similar to Figure 1, Figure 3 also shows an unstable interior equilibrium point and shows 

solutions of the system trending towards a unique limit cycle. In this case, the refuge parameter 

m=0.3.  



 

Figure 3: Phase Portrait of system with m=0.3 

 Figure 4 shows the solution curves over time. In this diagram both the x and y variables 

(predator and prey populations) are plotted against time. The value m=0.32 is used, which is 

the bifurcation point for the system. We see that in this case, both predator (black line) and 

prey (red line) populations display periodic solutions.  



 

Figure 4: Solution curves over time for m=0.32 (at the bifurcation point). Predator: Black Line; 

Prey: Red Line 

Once the value of m is increased past the bifurcation point, the periodic solutions 

disappear and the system trends toward a stable equilibrium, solutions curves for which are 

seen in Figure 5 (m=0.4) and Figure 7 (m=0.85). Additionally, Figure 6 shows the phase portrait 

for the system with the predator population plotted against the prey population. From this, we 

can see that all solutions spiral toward the attractor point (17.65, 32.3), which implies that the 

system is stable over time at this parameter value. 



 

Figure 5: Solution curves over time for m=0.4. Predator: Black Line; Prey: Red Line 

 

Figure 6: Phase Portrait for m=0.5. All solutions tend to (17.65, 32.3). 



 

Figure 7: Solution curves over time for m=0.85. Predator: Black Line-tends to 53.82; Prey: Red 

Line-tends to 58.82. 

 

Figure 8: Phase Portrait of the system with m=0.95. All solutions tend to (100,0). 



 As seen in Figure 8, if the bifurcation parameter is increased further to m=0.95, the 

system still has an equilibrium point, but it is no longer in the interior of the system. Instead, all 

solutions tend to the attractor point (100, 0). This represents that if 95% of the prey population 

has access to the refuge, the predator population will not be able to sustain itself and will 

eventually die out, regardless of the initial population values. Intuitively, this makes sense as 

such a large proportion of the prey being inaccessible to predators would result in a critical 

shortage of food for predators. 

 

Figure 9: Bifurcation diagram for prey population with parameter m. 

 Finally, Figures 9 & 10 display bifurcation diagrams for parameter m. Figure 9 represents 

the prey population and Figure 10 represents the predator population. We can see from the 

diagram that the prey population strictly increases as the value of m increases and increases at 

a very rapid rate once m is beyond the value of β, which for this simulation was taken as β=0.6. 



This is consistent with findings in the original paper that the system is stable for m>β and tends 

toward the boundary equilibrium point. In the real-life context of the model, this also makes 

sense as a greater number of prey able to use the refuge would logically result in a greater 

overall prey population remaining alive.  

 Figure 10 shows that the predator population increases up to a point while m increases, 

before dropping off rapidly to 0 once too many prey are accessing the spatial refuge so that the 

predators can no longer sustain themselves. We can also see that in both bifurcation diagrams, 

the stability changes at the bifurcation point (m=0.32) which is also consistent with previous 

diagrams as well as the results of the original research. 

 

Figure 10: Bifurcation diagram for predator population with parameter m. 

 Overall, this research was strong and presented new insight into predator-prey 

interaction by adding a component to the model that has useful applications to many real-life 



ecological systems. The researcher proved the existence and conditions necessary to produce 

equilibrium points in the system and determine their stability. The researcher also presented 

phase portraits and solution curves for values of the system parameter that were less than, 

equal to, and greater than the bifurcation point. This allowed for a broad picture of the system 

to be understood, and particularly how the qualitative behaviour changed. The model and 

diagrams were constructed in a way that allowed for a clear interpretation to be made for what 

varying the parameter would represent and what it would affect in a real-life context, which I 

believe strengthens the usefulness of the research. While the paper did include the necessary 

proofs to maintain rigour, emphasis was placed on numerical simulations. Methods of 

calculation and diagram construction were consistent with those that were covered in Math 

361.  

 To extend this research, I would incorporate a tier structure to the spatial refuge. 

Instead of making the assumption that the refuge provided guaranteed safety to prey, the 

refuge could include multiple tiers, each of which had a progressively lower likelihood of the 

prey surviving. This may better represent some natural situations as refuges could exist in 

which prey are more likely to escape predators, but are still not guaranteed safety. For 

example, this could be an enclosed space which poses physical difficulties for predators to 

access, such as entrance size or needing to access the space above ground level. However, 

while prey would certainly be safer in these instances, some such refuges would not be 

impossible for prey to access, and therefore a certain percentage of prey may still be 

vulnerable. In mathematical terms, this would involve adding an additional term to what was 

already added in the previously discussed research. Instead of adding just the (1-m) term to 



represent the refuge, it could be replaced with (1-m-n/2) or (1-m-n/2-h/4), which would 

represent two and three tiered refuges respectively. In this example, the m parameter would 

function identically as it did before and would represent the proportion of prey guaranteed 

safety by the refuge. However, n would represent prey in a tier of the refuge that only provided 

50% likelihood of safety, and therefore half of these prey would still be vulnerable to predators. 

Similarly, in the three-tiered example, h would represent the proportion of prey for which the 

refuge was only providing a 25% likelihood of safety.  

 The following are preliminary diagrams for a two-tiered refuge system with the (1-m-

n/2) term replacing the (1-m) term in the model. The new diagrams were also computed using 

XPPAUTO, using identical parameter values in order to determine the effect of the two-tier 

refuge. Figure 11 shows the new nullcline diagram and phase portrait and equilibrium point 

(10.381, 20.673) for parameter values m=0.1 and n=0.1. We can see that the nullclines and the 

behaviour of the system are similar to the original system, with the equilibrium point having 

moved from (9.80, 19.65) to (10.381, 20.673). In figures 12, 13, and 14 we see solution curves 

plotted for predator (black line) and prey (red line) populations for different parameter values 

for m and n. For figure 12, m=0.2 and n=0.2 and periodic solutions are observed. However, in 

figure 13, m=0.25 and n=0.2 and the populations tend toward equilibrium values. In figure 14, 

the parameter values are switched so m=0.2 and n=0.25, and the system appears to again tend 

toward an equilibrium, but at a much slower rate. This suggests that parameter m has a larger 

impact on the behaviour of the system. This also suggests that each new tier added to the 

refuge that provided less likelihood of safety would have decreasing impact on the overall 

behaviour of the system. 



 

Figure 11: Nullcline diagram & Phase Portrait for two-tiered refuge with parameters m=0.1 and 
n=0.1. The new (unstable) equilibrium point (10.381, 20.673) is shown. 

 

 

Figure 12: Solution curves for m=0.2 and n=0.2 in two-tiered refuge system 



 

 

Figure 13: Solution curves for m=0.25 and n=0.2 in two-tiered refuge system 

 

 

Figure 14: Solution curves for m=0.2 and n=0.25 in two-tiered refuge system 


